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Summary

Rett syndrome (RTT) is a neurodevelopmental disorder
characterized by loss of acquired skills after a period of
normal development in infant girls. The responsible
gene, encoding methyl-CpG binding protein 2 (MeCP2),
was recently discovered. Here we explore the spectrum
of phenotypes resulting from MECP2 mutations. Both
nonsense (R168X and R255X) and missense (R106W
and R306C) mutations have been found, with multiple
recurrences. R168X mutations were identified in six un-
related sporadic cases, as well as in two affected sisters
and their normal mother. The missense mutations were
de novo and affect conserved domains of MeCP2. All
of the nucleotide substitutions involve CrT transitions
at CpG hotspots. A single nucleotide deletion, at codon
137, that creates a L138X stop codon within the methyl-
binding domain was found in an individual with features
of RTT and incontinentia pigmenti. An 806delG dele-
tion causing a V288X stop in the transcription-repres-
sion domain was identified in a woman with motor-
coordination problems, mild learning disability, and
skewed X inactivation; in her sister and daughter, who
were affected with classic RTT; and in her hemizygous
son, who died from congenital encephalopathy. Thus,
some males with RTT-causing MECP2 mutations may
survive to birth, and female heterozygotes with favor-
ably skewed X-inactivation patterns may have little or
no involvement. Therefore, MECP2 mutations are not
limited to RTT and may be implicated in a much broader
phenotypic spectrum.
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Introduction

Rett syndrome (RTT) is a neurological disorder char-
acterized by a period of early normal growth and de-
velopment followed by regression with loss of speech
and acquired motor skills, stereotypical hand move-
ments, and seizures. Slowing of brain growth and post-
natal growth failure are frequently present (Rett 1966;
Hagberg et al. 1983; Trevathan et al. 1988). Usually
sporadic, RTT causes developmental impairment almost
exclusively in girls. The cause of RTT has been debated
in the literature for more than a decade (Hagberg et al.
1983; Martinho et al. 1990; Migeon et al. 1995). Studies
of rare familial cases, including a severely affected male
infant, provided evidence that RTT is caused by X-linked
dominant mutations in a gene (or genes) subject to X-
chromosome inactivation (XCI). Polymorphic marker
typing of familial cases allowed exclusion of most
regions of the X chromosome and focused the search
for the RTT gene on band Xq28 (Ellison et al. 1992;
Schanen et al. 1997; Schanen and Francke 1998; Sirianni
et al. 1998).

The incidence of RTT, estimated at 1/10,000–15,000
females, with 99.5% of all cases being sporadic, requires
a high rate of new mutations (Hagberg 1985). In anal-
ogy to recurrent de novo microdeletions mediated by
recombination between highly homologous flanking se-
quences—as seen in Prader Willi/Angelman syndromes,
Williams-Beuren syndrome, Smith-Magenis syndrome,
and velocardiofacial syndrome (Lupski 1998)—we
strongly considered a genomic rearrangement mecha-
nism for RTT. A systematic search for microdeletions in
the nonexcluded region of the X chromosome, however,
excluded deletions 1100 kb (Fan et al. 1999) and sug-
gested a single-gene mechanism.

Our systematic mutation analyses of genes in the 10-
Mb region encompassing band Xq28 excluded several
candidates (Wan and Francke 1998; Amir et al., in press)
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before it culminated in the recent finding of missense
and truncating mutations in the MECP2 gene that en-
codes a methyl CpG-binding protein (Amir et al. 1999).
This discovery came as a surprise, since MECP2 would
not appear to be a strong candidate for a primary brain
disorder, because the protein is ubiquitously expressed,
associated with 5-methylcytosine (5-mC)–rich hetero-
chromatin, and potentially involved in global gene si-
lencing (Nan et al. 1997). In addition, chimeric mice,
that can be considered equivalent to XCI mosaics, made
with Mecp2-deficient embryonic stem cells, for an X-
linked RTT mutation, died in utero (Tate et al. 1996).

Symmetrical methylation of the C5 position of cyto-
sines in CpG dinucleotides, as well as chromatin mod-
ification, have long been known to cause transcriptional
silencing of individual genes and to mediate global epi-
genetic phenomena, such as mammalian XCI and ga-
metic imprinting (Lindsay et al. 1985; Li et al. 1993).
Although the two processes are functionally linked
(Keshet et al. 1986; Buschhausen et al. 1987; Kass et al.
1993), the molecular mechanism for the interaction was
unclear. Methylated DNA is associated with hypoace-
tylated histones (Eden et al. 1998). MeCP2 has recently
been proposed to act as a molecular link by binding to
5-mC with its methyl-CpG–binding domain (MBD) and
to the corepressor Sin3A via its transcriptional repres-
sion domain (TRD), thus recruiting histone deacetylases
and other proteins to the silencing complex (Jones et al.
1998; Nan et al. 1998b; Razin 1998; Ng and Bird 1999).
Deacetylation of lysine residues of the core histones H3
and H4 alters the chromatin structure and renders the
methylated DNA inaccessible to the transcriptional ma-
chinery. This mechanism leads to stable transcriptional
repression that is heritable in somatic cells by the action
of maintenance methylase on hemimethylated DNA at
the replication fork.

In mammalian cells, the vast majority of CpG sites
are methylated. The 15% that are not methylated are
preferentially located in CpG islands at the promoters
of housekeeping genes. In mice, 5-mC is highly enriched
in pericentromeric heterochromatin regions where
MeCP2 is also concentrated (Lewis et al. 1992). On the
remaining chromosome arms and on rat and human
chromosomes (Nan et al. 1998a), anti-MeCP2 staining
reveals a uniform pattern suggesting that 5-mC is dis-
tributed throughout the genome and that binding of the
106 MeCP2 molecules per cell nucleus may function to
suppress transcriptional noise rather than to suppress
specific genes (Nan et al. 1997). CpG methylation is not
important for the proliferation and in vitro differenti-
ation of embryonic stem (ES) cells in which MeCP2 is
not expressed. Targeted ES cells that lack de novo DNA
methyltransferase (DNMT) or MeCP2 behave normally
in culture (Li et al. 1992; Tate et al. 1996). Methylation
becomes important, however, at the stage of organ dif-

ferentiation when the specific tissue and developmental
patterns of gene expression are established. CpG meth-
ylation and its associated histone modification are likely
to suppress the tissue-specific genes whose activity is not
required in the particular cell type. Clonal stability of
CpG methylation is the mechanism for the maintenance
of these patterns throughout life. CpG methylation is
essential for development, since Dnmt�/� embryos die in
midgestation (Li et al. 1992). Similarly, chimeras be-
tween normal and MeCP2-deficient ES cells survive, al-
beit with developmental defects, only if the proportion
of mutant ES cells is low (Tate et al. 1996). These mouse
experiments, although limited to Mecp2-targeted ES
cells of a single-strain (129) origin, suggest that MeCP2
protein expression is essential for embryonic develop-
ment. If that situation were analogous in humans, we
would not expect to find null mutations in surviving XCI
mosaics (which are comparable to mouse aggregation
chimeras) or in hemizygous males. The experience with
individuals with RTT who carry MECP2 mutations,
therefore, may not be consistent with the mouse data or
may indicate that the human mutant alleles are hypo-
morphs with residual function. We here expanded our
study of naturally occurring MECP2 mutations and
amino acid variants in humans. The results allow us to
examine the essential nature of the protein and the func-
tional importance that its various domains have for the
gene-silencing process. To fully explain the disease phe-
notype will require the identification of target genes
whose expression is dysregulated by the loss of normal
MeCP2 function in the nervous system.

Patients, Materials, and Methods

Patients and DNA Samples

DNA from lymphoblastoid cell lines (LCLs) and fresh
blood leukocytes from individuals diagnosed with RTT
and from their affected and unaffected family members
was obtained as reported elsewhere (Hofferbert et al.
1997; Schanen et al. 1997; Schanen and Francke 1998;
Wan and Francke 1998). We also studied LCLs from
the Brazilian family with three affected sisters reported
by Sirianni et al. (1998). A girl with features of RTT
and incontinentia pigmenti (IP), previously reported in
an abstract (Lo et al. 1997), was included as well. Her
clinical history is summarized here. At birth, she had on
her right leg faint red papules that extended from the
groin to the calf, in a linear fashion. At age 1 mo, the
papules were replaced by hyperpigmentation. There
were never any blisters or involvement of any other parts
of the body. A biopsy of the lesion at age 3 years revealed
prominent spongiosis and cytoid bodies in the dermis,
together with superficial perivascular infiltrate, promi-
nent pigment incontinence, and abundant eosinophils.
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Table 1

MECP2 Mutations and Normal Variants

Mutation Type
and Exon Domain

Nucleotide
Changea

Amino Acid
Change

Restriction
Siteb

(�/�)
CpG

Hotspotc Recurrencec Reference

Missense:
2 MBD 316CrT R106W NlaIII (�) � � (2#) Amir et al. (1999); Present study
3 MBD 397CrT R133C None � � Amir et al. (1999)
3 MBD 464TrC F155S TfiI (�), HinfI (�) � � Amir et al. (1999)
3 MBD 473CrT T158M NlaIII (�) � � Amir et al. (1999)
3 TRD 916CrT R306C HhaI (�), HinP (�) � � Present study

PTT:
3 MBD 411delG L138X None � � Present study
3 ) 502CrT R168X HphI (�) � � (7#) Present study
3 ) 620insT E235X BsgI (�) � � Amir et al. (1999)
3 TRD 763CrT R255X None � � (2#) Amir et al. (1999); Present study
3 TRD 806delG V288X NlaIV (�) � � Present study

Variant:
3 ) 1189GrA E397K StyI (�), MnlII (�) �(AS) � (2#) Present study

a Numbered from the ATG initiator codon.
b � = Generated; � = abolished.
c � = Present; � = absent; AS = antisense strand.

The histopathological findings were compatible with the
diagnosis of IP. Her neurodevelopment was normal for
the first 18 mo. Regression of speech occurred at age
∼20 mo. In addition, she gradually lost previously
learned hand skills and developed frequent hand-wash-
ing movements at age ∼2 years. She also developed au-
tistic features with gaze avoidance and bruxism. At age
3 years 8 mo, her height was at the 3d percentile, her
weight and head circumference were at the 10th per-
centile, and she was hypotonic. She did not fulfill all the
diagnostic criteria for RTT and was considered to re-
present a variant. Differential diagnostic possibilities
were excluded by appropriate testing.

Mutation Detection

PCR amplification of the three MECP2 coding ex-
ons from genomic DNA was performed by use of
the primer pairs and conditions described elsewhere
(Amir et al. 1999), with some modifications. Primers
were redesigned for amplification of exon 1: forward
5′-AAAACAGATGGCCAAACCAG-3′ and reverse 5′-
CAATGGGGGCTTTCAACTTA-3′, with annealing
temperature of 55�C. For the most 3′ portion of the
exon-3 coding region, the published forward primer
5′-GGAGAAGATGCCCAGAGGAG-3′ was used with
a new reverse primer, 5′-CCAACTACTCCCACCCT-
GAAGC-3′, at an annealing temperature of 62�C.

PCR products were treated with 1 U exonuclease, fol-
lowed by treatment with 1 U shrimp alkaline phospha-
tase, each at 37�C for 15 min. The enzymes were in-
activated for 10 min at 80�C. The treated PCR products
were sequenced directly on both strands, by use of the
same PCR primers with fluorescent-dye terminators, on
an ABI 377 automatic sequencer. Alternatively, PCR

products were gel purified (Qiagen) prior to sequencing.
For the LCL from the RTT/IP patient, PCR products
were also cloned by use of a TOPO TA cloning kit (In-
vitrogen), and 13 clones were sequenced. Sequencing
results were compared with the reference human
MECP2 sequence (GenBank X89430 and AF030876)
by use of Sequencher 3.0 (GeneCodes). Both strands
were sequenced to confirm all the mutations detected.

Restriction-Enzyme Analysis

Restriction-enzyme digestion of PCR products was
carried out to confirm mutations that generated or abol-
ished specific cleavage sites and for evaluation of family
members. Specifically, HphI was used to detect the com-
mon R168X mutation, since C502T creates a new cleav-
age site for HphI. The 806delG deletion abolishes a
NlaIV restriction site and was detected by NlaIV di-
gestion of PCR products. StyI digestion was used for
study of the single-nucleotide polymorphism 1189GrA
(E397K).

XCI

The androgen-receptor polymorphism was studied in
fresh leukocytes from the RTT/IP individual, as de-
scribed elsewhere (Allen et al. 1992; Schanen et al.
1997).

Results

Mutations Leading to Premature Termination of
Translation (PTT)

The 502CrT transition changes a CGA arginine to a
TGA stop at codon 168 in exon 3 (table 1 and fig. 1A).



Figure 1 Sporadic and familial mutations in MECP2. A, Sequence tracings of six mutations, including the normal variant 1189GrA.
B, R168X mutation, identified by a mutation-induced cleavage at a HphI site. The mother and two affected daughters are heterozygotes. C,
806delG frameshift mutation, identified by loss of an NlaIV site. Two females with RTT, the obligate carrier, and the affected male are positive
for the diagnostic 365-bp fragment. There is no evidence for somatic mosaicism in I-3, who transmitted the mutation to her two daughters.
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This mutation, which occurs at a CpG dinucleotide, was
found in six unrelated sporadic cases. The mutation, in
five white individuals and one Japanese individual di-
agnosed with classic RTT, was not present in any of the
mothers or in the available fathers. The same mutation
was identified in a family with three affected sisters, from
Brazil, that had been previously studied for exclusion
mapping by haplotype analysis (Sirianni et al. 1998;
Webb et al. 1998). As shown in figure 1B, this R168X
mutation creates an HphI site and was present in the
LCLs derived from two affected sisters and their phe-
notypically normal mother and was not present in LCLs
from the two unaffected sisters. As previously reported,
the mother had a completely skewed X–activation pat-
tern (Sirianni et al. 1998). Codon 168 is located between
the MBD and the TRD. Since the R168X mutation oc-
curs in the final exon, it is not expected to cause non-
sense-mediated decay of the mutant mRNA (Carter et
al. 1996). A putative truncated protein may retain its
ability to bind to 5-methyl CpG. However, since the
nuclear-localization signal (NLS) resides within the TRD
(Lewis et al. 1992), the truncated protein of 167 amino
acids, lacking the NLS, may remain largely in the cy-
toplasm. Indeed, the product of a transfected mutant
construct containing the N-terminal 173 amino acids of
the rat Mecp2 gene was located predominantly in the
cytoplasm (Kudo 1998).

Frameshifts due to single-nucleotide deletions were
identified in two cases. The 411delG deletion at codon
137 creates a TGA stop codon immediately downstream
(L138X). This truncation mutation within the MBD was
found in the individual with incomplete diagnostic fea-
tures of RTT and highly localized skin findings resem-
bling incontinentia pigmenti (IP). The mutation was seen
in the heterozygous state in PCR products and in 7 of
13 clones in a bacterial vector. Since the IP2 locus is
also assigned to Xq28, this patient’s cells were initially
scrutinized for the presence of a genomic rearrangement
that might inactivate both loci and lead to the identifi-
cation of both genes. The discovery of the MECP2 mu-
tation in this patient is consistent with a diagnosis of
RTT. XCI studies at the androgen-receptor locus were
performed in different laboratories on several occasions.
In this patient’s blood, there was preferential inactiva-
tion of the paternal allele, with frequencies of
70%–80%. Her LCLs had a 100%-skewed XCI pattern.
Female heterozygotes for IP have completely skewed
XCI patterns in all tissues, presumably because of se-
lection against cell-lethal alleles (Migeon et al. 1989;
Parrish et al. 1996). The highly localized cutaneous find-
ings could suggest mosaicism for a postzygotic mutation
in the IP2 gene. One should consider, however, that
L138X is the closest to a loss-of-function mutation of
all 10 MECP2 mutations identified so far. The putative
truncated product missing half of the MBD would no

longer be able to bind methyl-CpG. A truncated protein
made from an expression construct containing amino
acids 1–156 did not bind a CpG-methylated oligonu-
cleotide in a southwestern DNA-binding assay (Nan et
al. 1993). Therefore, the possibility that this mutation
may cause a more complex phenotype cannot be ex-
cluded at this time.

Deletion of one of four consecutive guanines
(806delG) causes a frameshift that, after 19 missense
amino acids, leads to a stop codon at position 288 within
the TRD. This mutation was identified in all affected
members of a two-generation family previously studied
for exclusion mapping of the RTT gene on the X chro-
mosome (Schanen et al. 1997). As shown in figure 1C,
the aunt and niece diagnosed with classic RTT, the trans-
mitting female with mild neurological symptoms (poor
motor coordination, apraxia, and fine tremor), an IQ of
71, and favorably skewed XCI, and her son, who died
from a neonatal encephalopathy (Schanen and Francke
1998), were all positive for this truncating mutation. By
sequencing, as well as by NlaIV digestion, the mutation
was not detected in LCLs or fresh leukocyte DNA from
the grandparents in generation I, four of the grand-
mother’s sisters (only two are shown), and their mother
(not shown). Taking into account the haplotyping results
for markers in Xq28 (Schanen et al. 1997) that indicate
grandmaternal origin of the mutant MECP2 allele, we
postulate germline mosaicism in individual I-3 as the
origin of this mutation. A random XCI pattern in this
phenotypically normal individual is consistent with lack
of somatic mosaicism for the mutation. The mutant
mRNA was detected by RT-PCR and northern blot in
three different tissues from the affected male (data not
shown). Our finding of a truncating MECP2 mutation
in this family confirms that hemizygous males may be
born alive and that skewed XCI mosaicism can lead to
mild involvement in females heterozygous for a mutation
that causes classic RTT when associated with random
XCI.

Mutations Causing Amino Acid Substitutions

The 316CrT transition leading to the R106W sub-
stitution in the MBD was previously found in affected
half-sisters but not in their common mother (Amir et al.
1999). We identified the same mutation in an unrelated
sporadic case (table 1 and fig. 1A). In another sporadic
case, a 916CrT transition changes an arginine to a cys-
teine residue. This mutation, R306C, is the first missense
mutation identified in the TRD. The substituted arginine
residues in both locations are conserved in MECP2, from
mammals to Xenopus laevis. Sequence analysis of both
sets of parents confirmed the de novo occurrence of these
two missense mutations, in agreement with their des-
ignation as disease-causing mutations in classic RTT.
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Figure 2 MECP2 mutations in Rett syndrome. The structure of the human MECP2 gene is derived from the genomic sequence (GenBank
AF030876). The functional domains were defined by Nan et al. (1993, 1997).

In contrast, a 1189GrA transition leading to a lysine-
for–glutamic acid substitution is unlikely to cause dis-
ease, for several reasons. The E397K mutation was iden-
tified in the heterozygous state in an RTT individual and
in her unaffected sister, as well as in the hemizygous
state in the normal father. The mutated glutamic-acid
residue is outside the functional domains and is not con-
served in evolution—in fact, the Xenopus MECP2 se-
quence carries a lysine at the orthologous site. Since this
mutation creates a cleavage site for the enzyme StyI, we
used restriction-enzyme analysis to screen for the mu-
tation in a panel of unrelated male and female control
individuals of similar ethnic background. One of the 78
X chromosomes screened carried the 1189A (397K) al-
lele. In that family, the variant was inherited from the
normal mother. We conclude that E397K is a rare amino
acid variant, so far identified in two unrelated white
families. Since the mutation consists of a CrT transition
at a CpG dinucleotide on the antisense strand, it could
potentially result from independent mutational events in
the two families.

Discussion

Spectrum of Mutations

With the discovery of mutations in the MECP2 gene,
RTT became the first human disorder caused by genetic
defects in a component of the epigenetic silencing ma-
chinery (Amir et al. 1999). Including the new mutations
reported here, the spectrum now encompasses five mis-
sense and five nonsense or frameshift mutations leading
to PTT (table 1). All missense mutations involve highly

conserved amino acids in functional domains. The four
amino acid substitutions in the MBD may reduce or
abolish methyl-CpG binding. Replacement of arginine
by cysteine in the TRD may cause abnormal folding and/
or affect interactions with other proteins of the Sin3A/
histone deacetylase silencing complex.

Our studies of 18 unrelated families identified only
10 different mutations because of independent de novo
recurrences (fig. 2). With one recurrence each for
R106W and R255X, the striking finding of six recur-
rences of R168X in two different laboratories (i.e., those
of U.F. and N.C.S.) points to a true mutational hotspot
(table 1). Thus, the majority of RTT individuals (10/12
families in this study and 12/18 total families) have PTT,
rather than missense, mutations. Four of the five PTT
mutations predict a truncated protein leaving the MBD
intact. Although nonsense-mediated mRNA decay
should not be an issue, it remains to be determined
whether truncated proteins are synthesized and have re-
tained methyl-CpG–binding activity. If they can no
longer bind to Sin3A because of lack of the TRD, what
could be their residual function? Full-length MeCP2
binds to single methyl-CpG sites and protects up to 12
nucleotides (Nan et al. 1993). Binding of truncated pro-
tein molecules to methyl-CpG sites could provide steric
hindrance to the transcription complex. Inactive pro-
moters usually contain a higher density of CpGs than
there is room for MeCP2 molecules to bind (Nan et al.
1997). Therefore, smaller MBD-containing mutant pro-
tein molecules bound to multiple CpGs in CpG islands
might accomplish some degree of silencing, either by
recruiting a silencing complex by a TRD-independent
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mechanism or by interfering with transcription-factor
binding directly.

Mechanism of Mutagenesis

Seven of the eight single-nucleotide substitutions in
table 1 are CrT transitions at CpG sites. Even though
CpG dinucleotides are underrepresented in vertebrate
genomes, they are hypermutable and represent common
sites of germline and somatic mutations (Rideout et al.
1990). The proposed mechanism involves 5-methylation
of cytosine by a methyltransferase and spontaneous de-
amination of 5-methylcytosine to thymine. This type of
mutation was observed in 10 of the 12 families in this
report (or in 13 of the 18 RTT families total). CrT or
GrA (when the 5-methylcytosine deamination occurs
on the antisense strand) transitions overall constitute
∼55% of single-nucleotide substitutions in a human ge-
netic-disease mutation database (Krawczak and Cooper
1996), but, for some genes, the frequencies are much
higher. Almost all cases of achondroplasia are due to a
GrA transition at a single CpG site in the FGFR3 gene
(Bellus et al. 1995). CpG hypermutatibility implies that
the site is methylated in the germline and thus is prone
to deamination. Male germ cells have high levels of CpG
methylation, and the X chromosome, in particular, is
completely inactivated. As a consequence, the MECP2
gene is likely to be methylated, since it is not expressed
in male germ cells. Its expression level in female germ
cells is not known; however, the DNA in oocytes is mark-
edly undermethylated (Monk et al. 1987). Germline
CpG transition mutations in the factor IX gene that
cause hemophilia B show an 11-fold male predominance
(Ketterling et al. 1993). Therefore, we hypothesize that
the majority of de novo MECP2 mutations leading to
RTT arise from a 5mCrT deamination in a male germ
cell where the MECP2 gene is methylated. Although the
parental origin will have to be established by haplotyp-
ing, we expect to find a preferential paternal origin for
these mutations. Such a hypothesis has previously been
proposed to explain the sex-limited occurrence of RTT
in females (Thomas 1996).

In an attempt to focus our future mutation search on
CpG hotspots, we analyzed the MECP2 coding sequence
and identified a total of 63 CpGs. At 28 of those sites,
a CrT transition on the coding strand would be silent,
creating a synonymous codon. The remaining 35 CpGs
are potential mutational hotspots (see table A1 in the
Appendix, which appears only in the online edition).
Two of the five potential RrX mutations were already
identified, in patients with RTT, as recurrent nonsense
mutations (see above). Of nine potential amino acid sub-
stitutions in the MBD, three have been identified in pa-
tients with RTT, as has one of the six potential substi-
tutions in the TRD (table 1). All amino acid residues in

the MBD and TRD that are potentially mutable by CrT
transitions are conserved in the Xenopus MECP2 se-
quence. Outside the MBD and TRD domains, nine po-
tential substitutions affect conserved residues, and seven
affect nonconserved residues. Mutations in these latter
sites may cause minor functional impairment of the mu-
tant protein and may not lead to RTT.

When CrT transitions at CpG sites occur on the an-
tisense strand, they result in GrA transitions on the
coding strand. For the human MECP2 sequence, all pos-
sible events of this kind could give rise to nine different
types of amino acid substitutions at a total of 51 dif-
ferent codons. Many of these are exchanges between
similar amino acids such as Val and Ile, or Asp and Asn.
Only one of these predicted substitutions was observed
in our study: E397K. It appears to be a rare normal
variant in the population.

Mutation Detection

When mutations create or abolish restriction sites,
samples can be screened by restriction-enzyme digestion
(fig. 1). A stepwise protocol for mutation screening could
start with restriction digests of PCR products to look
for the common R168X mutation and the potential
R270X mutation in the TRD. Two of the observed mis-
sense mutations and five potential arginine substitutions
in the MBD also change restriction sites, as do four
arginine substitutions in the TRD, one of which has
already been identified.

PCR amplification of overlapping genomic fragments
has detected MECP2 mutations in ∼50% of patients
with RTT. So far, we analyzed only the coding region.
MECP2 mutations could also involve the highly con-
served regions within the 8.5-kb 3′UTR (Coy et al.
1999). The finding of de novo disease-causing mutations
in the 3′UTR would be a major step toward understand-
ing the posttranscriptional regulation of MECP2. If
complete screening of the gene fails to reveal de novo
mutations in a significant number of probands with RTT,
the possibility of a second RTT locus should be consid-
ered. Since the families that were used to narrow the
search for the RTT gene to Xq28 have mutations in
MECP2, as reported here, a putative second RTT locus
could reside anywhere on the X chromosome.

Effects of MECP2 Mutations on the Phenotype

MECP2 is expressed during organogenesis through-
out the embryo and, later, most strongly in the hippo-
campus (Coy et al. 1999). Mutations in this gene, there-
fore, might impair several organ systems. There are
many potential reasons for the RTT phenotype not being
more pleiotropic. In tissues other than the brain, the
function of a mutant MeCP2 could be taken over by
related proteins that do exist. A database search led Hen-
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drich and Bird (1998) to three related genes that share
a similar MBD but have no sequence similarity outside
this domain and no identifiable TRD. Of the three
loci—called “MBD2,” “MBD3,” and “MBD4”—all of
which were characterized and mapped to autosomes in
mouse and human, that for MBD4 is the most closely
related to that for MECP2 (Hendrich et al. 1999a). As
was reported recently, MBD4 functions as a thymine
glycosylase that corrects mismatches generated by CrT
transitions (Hendrich et al. 1999b). As the components
of the histone deacetylase complex are identified, other
MBD-containing proteins have been found to carry out
the methyl-CpG binding function (Wade et al. 1999).
The MeCP1 complex containing MBD2 and MBD3
could be involved in silencing at sites with �12 meth-
ylated CpGs (Meehan et al. 1989). In HeLa cells, which
lack the MeCP2 protein, methylated genes are silenced
by this complex (Ng and Bird 1999).

DNA methylation–dependent silencing is a known
mechanism for maintenance of XCI and gametic im-
printing patterns. Is there any evidence for abnormalities
in these processes in individuals with RTT? Escape from
XCI causing biallelic overexpression of X-linked genes
has been considered early on as a possible causative
mechanism for RTT that could never involve males, un-
less they were XXY. No data in support of this notion
have been published. Numerous investigators have used
the androgen-receptor polymorphism for XCI studies in
individuals with RTT (Allen et al. 1992; Schanen et al.
1997). Reactivation of the inactive AR allele would lead
to complete HpaII digestion of both alleles. To our
knowledge, this has not been observed. Despite this pre-
liminary negative evidence, a careful study of the ex-
pression of X-chromosomal genes that are subject to
XCI might be in order.

The role of MeCP2 in keeping imprinted genes silent
is also unclear. Imprinted genes that are misexpressed in
dmnt-deficient mouse cells are normally expressed in
Mecp2-deficient cells (Hendrich and Bird 1998). A di-
agnostic workup of patients suspected of having RTT
routinely includes testing for Angelman syndrome, be-
cause of phenotypic overlap—first by FISH, to look for
15q11-q13 deletions, and then by restriction analysis of
allele-specific DNA-methylation imprints. No unex-
pected results have been reported. In addition, a large
number of individuals with classic RTT had normal
DNA methylation at the SNRPN locus (A. Beaudet and
H. Y. Zoghbi, unpublished data). Normal allele-specific
methylation patterns, however, do not imply proper si-
lencing if the MeCP2 protein is absent or defective.
Therefore, the possibility of dysregulation of imprinted
genes in RTT will need to be evaluated at the transcrip-
tional or translational level, accompanied by histone-
acetylation studies at imprinted loci (Coffee et al. 1999).
Since methyl-CpGs required for uniparental gene ex-

pression may also be located in introns of the expressed
alleles, both over- and underexpression of imprinted
genes may be anticipated as a consequence of MECP2
mutations. Our future research will focus on a global
assessment of gene-expression levels, using high-density
cDNA microarrays that will soon represent all human
genes. This screening procedure will generate over- and
underexpressed candidate genes, for more detailed stud-
ies that are needed to understand the pathogenetic steps
leading to neuronal dysfunction.

The Phenotypic Spectrum of MECP2 Mutations and
Indications for Diagnostic Testing

The two extremes of the phenotypic spectrum are le-
thality and normality. We identified a MECP2 mutation
in a hemizygous male with congenital encephalopathy
who had multiple respiratory arrests and survived for 1
year (Schanen and Francke 1998; Schanen et al. 1998).
That same mutation caused classic RTT in his sister and
aunt but only mild neurological symptoms and learning
problems in his mother (Schanen et al. 1997). Another
nonsense MECP2 mutation was found in a completely
normal woman who passed it on to three daughters,
who had RTT, and, possibly, to one son, who died during
the neonatal period (Sirianni et al. 1998). We conclude
that, regardless of the type of mutation, the XCI pattern
is the major determinant of the phenotype in females.
We propose the following model: individuals who meet
the diagnostic criteria for RTT (Trevathan et al. 1988)
are likely to have XCI ratios of 50/50–80/20, whereas
those on the fringes of the bell-shaped distribution would
not meet criteria. At one end of the spectrum, there are
severely affected females who lack the criterion of nor-
mal early development and follow a clinical course more
similar to that of hemizygous males (Schanen et al.
1998). At the other end, a mildly affected group will
include partially manifesting “forme fruste” females
(Hagberg 1995), as well as women with nonspecific neu-
rologic and learning deficits, for whom a diagnosis of
RTT would never be considered. Alternatively, incom-
plete clinical manifestations in females with milder var-
iant forms of RTT could also be caused by missense
mutations that have a subtle effect on MeCP2 function.
The indications for mutation testing, therefore, have to
include older females who do not meet diagnostic criteria
for RTT and female infants with neurodevelopmental
problems—with or without a period of normal devel-
opment—as well as males with unexplained death dur-
ing the neonatal period.
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